

Statistical softwares									
	SPSS	R	Excel						
配布元	IBM	The R project	Microsoft						
価格	Base ¥115,560 Options ¥63,936 / per 1 opt (学生パック ¥10,000- 20,000)	Free!	¥15,000-30,000						
OS	Win, Mac, Linux	Win, Mac, Linux Win, Mac							
何ができる か?	基本から応用まで (Optionsによる!)	基本から応用まで (Install packages)	基本						
利点	 GUI base 心理学データにマッチ スクリプトが簡単 (GUIから吐き出せる) 疑問はGoogleで解決 	 All free カスタマイズが用意 非常に多くのパッケージ 応用編の解析も比較的簡単 疑問はGoogleで解決 (ただし、難易度が高く、 英語の 場合もしばしば) 	 Datasheet base 全員使える 心理学データにマッチ 疑問はGoogleで解決 						
欠点	 非常に高価 応用編の解析は視覚的に できるとはとても思えない 	CUI base	 信用されない 応用解析はない 大規模データに向かない 						

2020/2/5

RStudioの起動 ./Rintro/seminar script.R をクリック RStudioを起動後、ファイルを選択

RStudioの起動

semina	r scripts.R ×	
ackao.	Source on save	Run 🖬 Source -
1	# reference (in Japanese) from	
	# https://sites.google.com/site/webtextofr/home	
3		
4 5	# comments # ctrl + Shift + c	
6		
8		
10	#set working directory	
11	setwd("C:/Users/shinsuke/Box Sync/Meeting/R seminar for beginners")	
12		
13	#IT you want to execute and move into next line, ctrl + Enter	
15		
16	x <- read.csv("datal.csv", header=T)	
17		
19	library(xlsx)	

	View(x) (最初は大文字)
Environment History Connections	
🐔 🚍 🕎 Import Dataset 🗧 💰	List + C
Global Environment *	
Data	
• x 50 obs. of 32 variables	
id : int 1 2 3 4 5 6 7 8 9 10	
sex : int 2 1 1 2 2 1 2 2 1 2	
var1 : int 32 72 18 33 28 14 8 38 47 37	
var2 : int 54 76 99 69 80 60 46 7 82 88	
var3 : int 25 68 73 44 81 74 80 96 82 23	
var4 : int 72 42 13 97 21 43 84 38 26 25	
var5 : int 7 93 73 70 13 64 3 98 26 85	
var6 : int 97 85 41 99 51 95 49 95 91 38	
var7 : int 44 34 96 9 19 17 68 88 57 8	
var8 : int 59 31 74 12 3 2 48 55 57 59	
var9 : int 93 51 92 80 8 56 62 81 63 51	
var10: int 99 24 36 46 72 47 78 2 9 28	
var11: int 8 35 91 11 9 38 40 37 28 33	
var12: int 5 12 19 30 43 21 78 73 51 4	
22-22-22(後述)	

R (RStudio)の基本ルール6

・変数の定義が重要です

論理値 Tl 文字列 "a 整数 -1	TRUE, FALSE	スカラー~行列	is logical()	
文字列 "a 整数 -1	o" "b" "c"		is.iugicai()	as.logical()
整数 -1	a, D, C	スカラー以上	is.character()	as.character()
	1, 0, 1	スカラー~行列	is.integer()	as.integer()
実数 -1	1, 0.5, 1.23	スカラー~行列	is.numeric()	as.numeric()
複素数 1	1 + 2i	スカラー~行列	is.complex()	as.complex()
順序なし因子 "E	'Boy", "Girl"	スカラー~行列	is.factor()	as.factor()
ベクトル c(2(1, 2, 3)	ベクトル以上	is.vector()	as.vector()
行列 m ni ní	matrix(1:6, nrow = 2, ncol = 3)	ベクトル以上	is.matrix()	as.matrix()
データフレーム 1	1つ以上のベクトル	ベクトル以上	is.data.frame()	as.data.frame()
リスト 1 セ	1 つ以上のデータ セット	ベクトル以上	is.list()	as.list()

R	R (RStudio)の基本ルール6									
・変数	の定義が重	夏です								
データ型	例	適用可能データ	構造検査	構造変換						
論理値	TRUE, FALSE	スカラー~行列	is.logical()	as.logical()						
文字列	"a", "b", "c"	スカラー以上	is.character()	as.character()						
整数	-1, 0, 1	スカラー~行列	is.integer()	as.integer()						
実数	-1, 0.5, 1.23	スカラー~行列	is.numeric()	as.numeric()						
複素数	1 + 2i	スカラー~行列	is.complex()	as.complex()						
順序なし因子	"Boy", "Girl"	スカラー~行列	is.factor()	as.factor()						
65 # cha	nna variahla	time	is vector()	as vector()						
66 y\$id 67 y\$sex	<- as.charact	er (y\$id) A (y\$sex) R	ttention! ではfactor変	数が鬼門です						
68 summa	ry(y)		is.data.frame()	as.data.frame()						
70 class	(y\$sex)		is.list()	as.list()						
71 is.fa 72 is.nu 72	ctor(y\$sex) meric(y\$sex)									

主な統計解析手法

- t test, U test
- Paired t test
- Pearson's r, Spearman's rho
- ANOVA, ANCOVA
- Repeated measures ANOVA
- General linear model (GLM)
- Chi square test
- Multiple regression
- Logistic regression model
- Generalized linear model
- Generalized linear mixed model
- Structure equation model

主な統計手法の分類 検討したい従属変数、独立変数(交絡変数)の種類がわかれば、検定方法は自ずと決まります											
					名義変数 non-parametric	順序変数もしくは	t重的変数 parametric				
			反復測定な	よし	カイニ乗検定	Mann-Whitney U検定	t 検定				
	白苦赤彩	2つ	反復測定あり		McNemar検定	Wilcoxon順位和 検定	paired-t検定				
	名我发敛		反復測定なし		カイニ乗検定	Kruskai-Walis検 定	ANOVA				
ᅓᇔ			反復測定あり		CochranのQ検定	Friedman検定	repeated- measures ANOVA				
<u>独立</u> 愛致 (説明変数)	順序変数	方向性なし	」(相関)		NA	Spearman's rho	Pearson's r,偏相 関				
	量的変数	方向性あり)		ロジスティック回 帰分析	多項ロジス ティック分析	重回帰分析				
			- 1 -	拡張 モデル	 一般化線系モデル 一般化線型混合モ 共分散構造分析 ベイズ統計学 ・・・ 	(Generalized lin デル	ear model)				

	例题	Ð								
1.	男女(Binary)間で抑うつ症状得点(continuous)						従属変数(目	目的変数) ·		
	の差を知りたいとき						名義変数	順序変数もし	くは量的変数	
	田大/Dinary)明ズ加ふつの方無(Dinary)の羊を						non-param	etric	parametric	
2 .	男女(binary)间で知うりの有無(binary)の差を 知りたいとき			20	反復測	定なし	カイ二乗検 定	Mann- Whitney U検 定	t 検定	
			夕盖亦粉		反復測定あり		McNemar 検定	Wilcoxon ^順 位和検定	paired-t検定	
3.	年齢層(若中老の3 category)間で抑うつ症状		白我友奴	3つ 以上	反復測	定なし	カイニ乗検 定	Kruskai- Walis検定	ANOVA	
	得点(continuous)の差を知りたいとき				反復測	にあり	Cochranの Q検定	Friedman検 定	repeated- measures ANOVA	
					方向	生なし(相関)		NA	Spearman's rho	Pearson's r , 偏相関
4.	年齢(continuous)と抑うつ症状得点 (continuous)の相関関係を知りたいとき	独立変数 (説明変 数)					ロジス ティック回 帰分析	多項ロジス ティック分析	重回帰分析	
5.	年齡(continuous)が抑うつ症状得点 (continuous)に影響を与えるという因果関係を 知りたいとき		順序変数 もしくは 量的変数	方向	生あり	拡張 モデル	一般化線系 model) 一般化線型) 共分散構造 ベイズ統計 ⁴ ・・・	モデル(Gene 昆合モデル 分析 学	ralized linear	
6.	年齢(continuous)が抑うつの有無(binary)に影 響を与えるという因果関係を知りたいとき									

	回答	;1									
1.	男女(Binary)間で抑うつ症状得点(continuous)						従属変数(目	目的変数)			
	の差を知りたいとき						名義変数	順序変数もし	くは量的変数		
•							non-param	etric	parametric		
2.	男女(Binary)间で抑つつの有無(Binary)の差を 知りたいとき			27	反復測	l定なし	カイニ乗検 定	Mann- Whitney U検 定	t 検定		
			白羊亦形	夕 叢亦数	夕美亦粉		反復測	にあり	McNemar 検定	Wilcoxon ^順 位和検定	paired-t検定
3.	年齢層(若中老の3 category)間で抑うつ症状		白我复数	30	反復測	定なし	カイ二乗検 定	Kruskai- Walis検定	ANOVA		
	得点(continuous)の差を知りたいとき				以上	反復測	l定あり	Cochranの Q ^{検定}	Friedman検 定	repeated- measures ANOVA	
	在数1	祈古之不满		方向的	性なし(相関)		NA	Spearman's rho	Pearson's r , 偏相関		
4.	平崎(continuous)と抑うつ症状侍点 (continuous)の相関関係を知りたいとき	低立复数 (説明変 数)					ロジス ティック回 帰分析	多項ロジス ティック分析	重回帰分析		
5.	年齢(continuous)が抑うつ症状得点 (continuous)に影響を与えるという因果関係を 知りたいとき		順序変数 もしくは 量的変数	方向!	主あり	拡張 モデル	一般化線系 model) 一般化線型 光分散構造 共分散構造 ベイズ統計 ・・・	モデル(Gene 昆合モデル 分析 学	ralized linear		
6.	年齢(continuous)が抑うつの有無(binary)に影響を与えるという因果関係を知りたいとき		1	L		L					

	回答	F 2										
1.	男女(Binary)間で抑うつ症状得点(continuous)						従属変数(目	目的変数)				
	の差を知りたいとき						名義変数	順序変数もし	くは量的変数			
2	田女(Dinary)明ズ抑うつの方毎(Dinary)の美た			_			non-param	etric	parametric			
Z .	男女(billary)間で知りつの有無(billary)の差を 知りたいとき			20	反復測	定なし	カイニ乗検 定	Mann- Whitney U検 定	t検定			
			名義変数・		反復測定あり		McNemar 検定	Wilcoxon ^順 位和検定	paired-t検定			
3.	年齢層(若中老の3 category)間で抑うつ症状			30	反復測	定なし	カイニ乗検 定	Kruskai- Walis検定	ANOVA			
	得点(continuous)の差を知りたいとき			以上	反復測	定あり	Cochranの Q検定	Friedman検 定	repeated- measures ANOVA			
.					方向的	性なし(相関)		NA	Spearman's rho	Pearson's r , 偏相関		
4.	年齢(continuous)と抑うつ症状得点 (continuous)の相関関係を知りたいとき	<u>独立変</u> 数 (説明変 数)					ロジス ティック回 帰分析	多項ロジス ティック分析	重回帰分析			
5.	年齢(continuous)が抑うつ症状得点 (continuous)に影響を与えるという因果関係を				UU E	順序変数 もしくは 量的変数	方向性	生あり	拡張	一般化線系 model) 一般化線型注	モデル(Gene 昆合モデル み板	ralized linear
6	知りたいとき 年齢(continuous)が抑うつの右無(binary)に影						ベイズ統計 ・・・	ž				
0.	半日で、Continuous がらりつの方面、Olifaly ため 響を与えるという因果関係を知りたいとき											

	回答	F3)								
1.	男女(Binary)間で抑うつ症状得点(continuous)						従属変数(目	目的変数)			
	の差を知りたいとき						名義変数	順序変数もし	くは量的変数		
•							non-param	etric	parametric		
2.	男女(Binary)间で抑つつの有無(Binary)の差を 知りたいとき			2-7	反復測	l定なし	カイニ乗検 定	Mann- Whitney U検 定	t 検定		
			名義変数 -		反復測	l定あり	McNemar 検定	Wilcoxon ^順 位和検定	paired-t検定		
3.	年齢層(若中老の3 category)間で抑うつ症状			3つ	反復測	l定なし	カイニ乗検 定	Kruskai- Walis検定	ANOVA		
	得点(continuous)の差を知りたいとき			以上	反復測	l定あり	Cochranの Q検定	Friedman検 定	repeated- measures ANOVA		
		Xeb		方向	性なし(相関)		NA	Spearman's rho	Pearson's r , 偏相関		
4.	半齢(continuous)と抑うつ症状得点 (continuous)の相関関係を知りたいとき	独立复数 (説明変 数)					ロジス ティック回 帰分析	多項ロジス ティック分析	重回帰分析		
5.	年齢(continuous)が抑うつ症状得点 (continuous)に影響を与えるという因果関係を 知りたいとき	数)			順序変数 もしくは 量的変数	方向	生あり	拡張 モデル	一般化線系· model) 一般化線型) 共分散構造 ベイズ統計 ⁴ ・・・	モデル(Gene 昆合モデル 分析 学	ralized linear
6.	年齢(continuous)が抑うつの有無(binary)に影響を与えるという因果関係を知りたいとき		I	L		L	1				

SPSS	R
重複ケースの特定	
ケースの並び替え Sort cases by id.	X[order(x\$id,decreasing=F),]
変数の並び替え	
行と列の入れ替え	t(x)
ファイルの結合(変数の追加)	x <- cbind(x, new.var)
ファイルの結合(ケースの追加)	x <- rbind(x, new.case)
再構成	
ファイルの分割	x.male <- x[x\$sex==1,]
ケースの選択	x.female <- x[x\$sex==2,]
ケースの重み付け	table()
他の変数への値の再割り当て recode age (0 thru 19=1)(20 thru 49=2)(50 thru 99=3)(else=sysmis). recode age (-1=sysmis)(0 thru 19=1)(20 thru 49=2)(50 thru hi=3) into agecategory.	expss::recode(x\$age) = c(0:19 ~ 1, 20:49 ~ 2, 50:99 ~ 3, other ~ NA) x\$agecategory = recode(x\$age, -1 ~ NA, 0 %thru% 19 ~ 1 20 %thru% 49 ~2, 50 %thru% 99 ~ 3, other ~ copy) recode(x\$age, -1 ~ NA, 0 %thru% 19 ~ 1, 20 %thru% 49 ~2, 50 %thru% hi ~ 3) %into% x%agecategory
連続変数のカテゴリ化	x\$agecategory <- ifelse(x\$age>20,1,0)

R, SPSS対応表							
SPSS	R						
記述統計:度数分布表							
記述統計:クロス集計表	chisq.test(x\$sex,x\$category) chisq.test(x\$sex,x\$category)\$residuals #post- hoc residual analysis						
平均の比較:グループの平均	mean(x\$age, na.rm = T)						
平均の比較: 1 サンプルの t 検定							
平均の比較:独立したサンプルのt検定	t.test(x\$age ~ x\$sex, var.equal = T)						
平均の比較:対応のあるサンプルのt検定	t.test(age1, age2, paired=T)						
平均の比較:一元配置分散分析	<pre>summary(aov(x\$age ~ x\$3categories)) summary(aov(age ~ 3categories, data = x)) anova.result <- aov(age ~ 3categories, data = x) summary(anova.result) TukeyHSD(anova.result)</pre>						
一般線形モデル:1変量	lm()						
一般線形モデル:多変量							
一般線形モデル:反復測定	aov(var1 ~ age * sex + Error(ID), data = x) OR https://www.wantedly.com/companies/diligenc e/post_articles/74556						

R, SPSS対応表		
SPSS	R	
一般化線形モデル	glm	
混合モデル:線形	Imer	
混合モデル:一般化線形	glmer or nlme packages	
相関:2変量	<pre>cor.test(x\$age,x\$iq) psych::corr.test(x) # correlation matrix</pre>	
相関:偏相関		
回帰:線形	$Im(sex \sim age + iq, data=x)$	
回帰:二項ロジスティック	glm(sex ~ age + iq, data=x, family="binomial")	
回帰:多項ロジスティック		
次元分解:因子分析	See page below	
ROC曲線		

R, SPSS対応表		
SPSS	R	
グラフ:棒	plot(x\$sex)	
グラフ:折れ線		
グラフ:円		
グラフ:箱ひげ図	<pre>boxplot(x\$age) boxplot(x\$age ~ x\$sex) boxplot(age ~ sex, data = x) plot(age ~ sex, data = x) plot(age ~ sex + categories, data = x)</pre>	
グラフ:エラーバー		
グラフ:散布図	plot(x\$ghq12 ~ x\$age)	
グラフ:ヒストグラム	hist(x\$age)	

Excel, SPSS対応表		
Excel		R
countif		expss::count_if(1,x\$sex) expss::count_col_if(gt(20),x\$age) expss::count_row_if(le(0),x)
sumif		expss::sum_if(gt(20),x\$age)
vlookup		expss::vlookup(x\$id,newlist,2) expss::vlookup(x\$id,newlist,"new.va r")
<1 <=1 <>1 =1 >=1 >1	lt(1) le(1) ne(1) eq(1) ge(1) gt(1)	
First column of the 'newlist' should be the lookup variable (i.e. id).		

